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Predicting treatment benefit in multiple myeloma
through simulation of alternative treatment effects

Joske Ubels® 23, Pieter Sonneveld?, Erik H. van Beers3, Annemiek Broijl%,
Martin H. van Vliet? & Jeroen de Ridder® '

Many cancer treatments are associated with serious side effects, while they often only
benefit a subset of the patients. Therefore, there is an urgent clinical need for tools that can
aid in selecting the right treatment at diagnosis. Here we introduce simulated treatment
learning (STL), which enables prediction of a patient’s treatment benefit. STL uses the idea
that patients who received different treatments, but have similar genetic tumor profiles, can
be used to model their response to the alternative treatment. We apply STL to two multiple
myeloma gene expression datasets, containing different treatments (bortezomib and lenali-
domide). We find that STL can predict treatment benefit for both; a twofold progression free
survival (PFS) benefit is observed for bortezomib for 19.8% and a threefold PFS benefit for
lenalidomide for 31.1% of the patients. This demonstrates that STL can derive clinically
actionable gene expression signatures that enable a more personalized approach to
treatment.
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ARTICLE

he successful treatment of cancer is hampered by genetic

heterogeneity of the disease. Differences in the genetic

makeup between tumors can result in a different response
to treatment!. As a result, despite the existence of a wide range of
efficient cancer treatments, many therapies only benefit a min-
ority of the patients that receive them?. Because many therapies
may be associated with serious adverse effects, there is a great
clinical need for tools to predict—at the moment of diagnosis—
which patient will benefit most from a certain treatment.

To address this, substantial efforts have been made to identify
clinical and molecular markers, such as gene expression signatures,
that can predict a favorable or adverse prognosis®. Traditionally,
this is achieved by defining subtypes (e.g., through unsupervised
learning approaches) based on molecular markers such as geno-
type or gene expression. For many of these subtypes an association
has been determined to survival or drug response*-°.

More direct approaches use supervised learning, such as
(logistic) regression, to identify markers associated with survival.
In this setting, a class label is defined for each patient based on
their survival or some other outcome measure, such as the risk of
experiencing a relapse. The training procedure then focuses on
predicting these labels as accurately as possible to ultimately
produce a classifier that can predict outcome for a new patient.
One of the first successful examples of such an approach resulted
in a 70-gene prognostic expression signature for breast cancer’. A
phase III clinical trial recently revealed that patients predicted to
have good survival based on this signature can safely forego
chemotherapy without compromising outcome$, thus preventing
overtreatment of these patients. These examples demonstrate that
prognostic predictors can have value in predicting benefit to
treatment.

Despite these successes, prognostic signatures are fundamen-
tally limited in their ability to predict treatment benefit. This is
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because prognostic signatures are determined without taking
treatment into account, ie., they are not trained to distinguish
patients that survive long as a result of the treatment. For this
reason, patients classified in the “long survival” class may in fact
survive just as long on any treatment available. Conversely,
patients in the “short survival” class could actually have benefited
from the treatment because they would have had an even shorter
survival on another treatment. In Fig. 1a, b, we illustrate this in the
setting of a randomized trial with two treatment arms. Figure la
shows the result for a prognostic classifier which results in a
survival difference between the two classes that is similar in both
treatment arms. However, to achieve treatment benefit prediction
we should identify a subset of patients that specifically benefit
from one of the two treatments, that is, where the difference in
survival between the two treatments is larger than in the popu-
lation as a whole (Fig. 1b). It should be noted that it is possible
that a prognostic classifier happens to identify a difference
between treatment arms as well, but this is not an aim in the
training procedure. We hypothesized that a method that is spe-
cifically geared towards optimizing the identification of a subset of
patients with a greater treatment benefit will achieve better results.

Treatment benefit is commonly measured by the hazard ratio
(HR), which describes a patient’s hazard to experience an event,
for example death or progression of disease, relative to another set
of patients who received a different treatment. Some recently
published predictive classifiers have only shown to find a differ-
ence in response or survival between two groups of patients who
all received the same treatment®~!l. These signatures are not
constructed to be predictive, since they do not necessarily provide
a treatment decision; the prognosis may well be the same in every
treatment group. To be truly predictive, a subgroup with a dif-
ference in survival between two treatment arms needs to
be identified.
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Fig. 1 lllustration of the difference between prognostic and predictive classifiers and an overview of the approach. a Example of the Kaplan-Meier curve for
a prognostic classifier. b Example of the Kaplan-Meier curve for a predictive classifier. ¢ Division of dataset into training and test sets. D1-D3 are all used
once to validate the classifier trained on the remaining two-thirds of data. d Flow of the GESTURE algorithm. In step 1 the prototypes with a longer than
expected survival difference are identified on fold A. In step 2 the number of prototypes and corresponding decision boundary used in the classifier are
optimized on fold B. In step 3 the performance of the classifier on fold C across all repeats is used to select the combination of gene sets to be used in the
final classifier. In step 4 a classifier for these gene sets is defined on all training data. This classifier will be validated on the fold D not included in the

training data
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Constructing classifiers that can achieve true treatment benefit
prediction thus poses a unique challenge, as it is impossible to
know how a patient would have responded to the alternative
treatment. As a result, class labels based, which can be used to
train a classifier are not available and existing classification
schemes are not applicable (as demonstrated in Sections Results
and Discussion).

To address the lack of suitable training labels, we introduce the
concept of simulated treatment learning (STL), a method to
derive classifiers that can predict treatment benefit. STL can be
applied to gene expression datasets with two treatment arms and
survival data. STL uses genetic similarity, defined based on gene
expression in the tumor, between patients from different treat-
ment groups to model how a particular patient would have
responded to the alternative treatment.

In this work we focus on predicting treatment benefit for
multiple myeloma (MM), a clonal B-cell malignancy that is
characterized by abnormal proliferation of plasma cells in
the bone marrow. Median survival of MM patients is 5 years!2.
In the last two decades many novel therapies have been intro-
duced for MM, resulting in an improved survival'>!4. Bortezo-
mib and lenalidomide were crucial in achieving these
improved survival rates. However, despite these advances, not
all patients benefit from these novel agents and there are
insufficient tools to predict treatment response or survival.
Between MM patients heterogeneity in gene expression profiles
is observed!>16, For these reasons, genetic signatures that can
predict treatment benefit for MM patients are of high clinical
value, making it an ideal test case for STL.

There are some preliminary indications that predictive sig-
natures may exist for MM. Some of the various prognostic factors
known in MM were later found to be predictive as well. For
instance, it was shown that patients with the chromosomal
aberration del17p, known to be prognostic, benefitted more from
the proteasome inhibitor bortezomib than patients without
del17p!7. Furthermore, expression levels of tumor suppressor
RPL5, located on chromosome 1, were also found to correlate
with bortezomib response!8. Both these abnormalities have been
found to be recurrently present in MM plasma cells and were
later found to be prognostic and predictive. STL enables us to
directly discover predictive markers, without relying on pre-
viously discovered (prognostic) markers. We implement the STL
concept in the algorithm Gene Expression-based Simulated
Treatment Using similaRity between patiEnts (GESTURE), which
makes it possible to derive a gene expression signature that is able
to distinguish a subset of patients with improved treatment
outcome from the treatment of interest, but not from the com-
parator treatment. We show that GESTURE can predict treat-
ment benefit for two major treatments in MM, bortezomib and
lenalidomide. The final classifier finds a subgroup containing
19.8% of the patients that have a twofold progression free survival
(PFS) benefit when treated with bortezomib and a threefold PFS
benefit for lenalidomide for 31.1% of the patients. Our results
demonstrate that GESTURE can be used to robustly derive
clinically actionable gene expression signatures that enable a more
personalized approach to cancer treatment.

Results

Definition of treatment benefit class. We combined data from
three randomized phase III clinical trials comprising of 910
patients with MM (see Methods), who either received the pro-
teasome inhibitor bortezomib (n=407) or not (n=503). For
each patient gene expression profiles were generated from pur-
ified myeloma plasma cells at diagnosis. An overall HR of 0.74
(95% CI: 0.61-0.90, p = 0.0029, n = 910) is observed between the
two treatment arms, in favor of the bortezomib arm. While this
HR indicates significant treatment benefit for bortezomib, we
asked whether this was driven by a small benefit for all patients,
or if a subgroup of patients can be identified showing a large
benefit from treatment with bortezomib, while the remainder of
patients show a smaller or no benefit from bortezomib. With this
research we aim to identify a subset of patients, the “benefit” class,
who benefit from the treatment of interest (bortezomib) relative
to a comparator treatment arm which does not contain borte-
zomib. The patients not included in the ‘benefit’ class belong to
the class “no benefit” and would not benefit from receiving
bortezomib. The classifier identifying this “benefit” class could
serve as a valuable diagnostic to determine, which newly diag-
nosed patients would benefit from bortezomib (based) treatment.

Regular classifiers cannot predict treatment benefit. We first
aimed to evaluate how well a regular (prognostic) classification
approach is able to reach treatment benefit prediction. According
to our definition of treatment benefit, a classifier should identify a
subset of patients (class “benefit”) with a significantly better
survival on the treatment of interest than the population as a
whole. In a regular binary classification setting, training such
classifier requires a labeled dataset, where the label indicates if the
patient will or will not benefit from treatment. As discussed in the
introduction, such labels are not available, since we cannot know
how a patient would have responded to a different treatment.
However, one reasonable assumption could be that patients who
survive long in the treatment arm of interest do so because they
benefited from the treatment, and, conversely, patients who
survive short in the other treatment arm do so because they
should have received the treatment of interest. Following this line
of reasoning, we define the “benefit” class as the 25% longest
surviving patients in the bortezomib arm and the 25% shortest
surviving nonbortezomib patients. Together, these two groups
form the class “benefit” (25% of all patients). All other patients
from the two arms (75%) are labeled as class “no benefit”.
Table 1 demonstrates that with some classifiers class “benefit”
can be predicted from the gene expression data reasonably well,
with a cross-validation accuracy ranging from 0.58 for the
random forest classifier to 0.81 for the support vector machine
classifier. However, using an independent validation fold, we find
that prediction of treatment benefit fails as no improvement in
HR is found over the whole population. A similar absence of
performance is observed when other percentages than 25% were
chosen to define the class “benefit” (Supplementary Tables 2-4).
The approach to derive labels directly from survival informa-
tion is essentially similar to prognostic classification, and our
results thus cast doubt on the utility of prognostic approaches in a

Table 1 Classification accuracy in cross-validation and HR in independent validation for the classifiers trained on labels based on
the top 25% surviving bortezomib patients and the bottom 25% nonbortezomib patients

Classification accuracy Validation HR p value
Nearest mean 0.58 (std. dev.: 0.07) 0.96 (95% Cl: 0.57-1.60) 0.86
Random forest 0.68 (std. dev.: 0.03) 0.95 (95% ClI: 0.54-1.68) 0.87
SVM 0.81 (std. dev.: 0.06) 0.81 (95% Cl: 0.31-2.13) 0.67
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Table 2 Classification accuracy in cross-validation and HR in independent validation for the classifiers trained on labels selected
from randomly generated classifications with a significant HR under 0.5

Classification accuracy Validation HR p value
Nearest mean 0.50 (std. dev.: 0.02) 0.81 (95% Cl: 0.49-1.35) 0.42
Random forest 0.66 (std. dev.: 0.02) 0.81 (95% Cl: 0.50-1.41) 0.51
SVM 0.83 (std. dev.: 0.06) 110 (95% Cl: 0.52-2.34) 0.80

predictive setting. However, this lack of performance may not be
surprising, since the training labels already lead to unrealistically
large HRs (<0.1), indicating that the labels are often wrong.
Classifiers trained on such noisy labels are indeed unlikely to have
predictive performance in independent validation data. It should
moreover be noted that this approach does not take censoring of
the patients into account.

As an alternative approach, we therefore also generated a large
number (1000) of random labelings and evaluated the HR in the
“benefit” class of these randomly labeled datasets. Those labelings
that resulted in a significant (p<0.05) HR below 0.5 were
subsequently used to train a classifier. This greedy random search
procedure enables taking into account censoring of patients
(through the calculation of the HR) and leads to less extreme HRs
in the training data. However, this approach also did not yield
classifiers with a significant HR when applied to the validation
fold (Table 2). This demonstrates that it is not straightforward to
derive labels for treatment benefit that can be accurately predicted
from the gene expression dataset.

Overview of simulated treatment learning. The key idea of STL
is that a patient’s treatment benefit can be estimated by com-
paring its survival to a set of genetically similar patients that
received the comparator treatment (Fig. 1d, step 1). Patients with
a large survival difference compared to genetically similar patients
can then act as prototype patients; new patients with a similar
gene expression profile are expected to also benefit from receiving
the treatment of interest. Since similarity in gene expression
profile is greatly influenced by the choice of input genes, we
define this similarity according to a large number of gene sets.
Training the prototype-based classifier requires optimizing two
parameters per gene set: the number of prototypes to use and the
decision boundary, defined in terms of the Euclidean distance to
the prototype (Fig. 1d, step 2). The STL classifier also needs to
select the optimal gene sets to ultimately classify a patient.
Importantly, the labels are now defined using the prototypes
identified for the various gene sets, which means that in the STL
approach there is no need to define labels before training the
classifier. To train the classifier and select the best performing
gene sets, the training data are split in three folds (A-C). Fold A is
used to identify prototypes, fold B to optimize the decision
boundary, and fold C to estimate classifier performance.

To obtain unbiased estimates of the overall prediction
performance, the entire dataset is divided in three equal folds,
D1-D3, ensuring a similar HR between the treatment arms in all
three folds. Training is performed on two folds, while the
remaining fold is kept separate to serve as an independent
validation set. This is rotated to obtain an unbiased prediction for
each fold. The division of the data in D1-D3, and subsequently in
folds A-C is shown in Fig. lc.

It is a priori unknown which genes will be relevant to defining
patient similarity and predicting treatment response. We used
10,581 functionally coherent gene sets based on Gene Ontology
(GO) annotation. Each gene set is used to train a separate
classifier. The top-performing classifiers are subsequently com-
bined into an ensemble classifier to determine the optimal

number of gene sets to be used in the final classifier (Fig. 1d, step
3, for details see Methods). For the gene sets included in this
optimal number a single classifier is trained using all the training
data.

These classifiers are combined into the final ensemble classifier
that is used to classify the patients in the validation set (Fig. 1d,
step 4).

STL finds a predictive classifier for bortezomib benefit. Fig-
ure 2a shows the cumulative progression free survival curves for
two treatment arms, with an HR of 0.74 (95% CI: 0.61-0.90, p =
0.0029, n=910) between the treatment arms. Figure 2b shows
the treatment arms and classes as identified by the STL classifier,
when combining the class ‘benefit’ from the three validation folds.
These three validation folds together comprise the whole dataset;
the classification of each validation fold is predicted by separately
trained classifiers. This enables us to show a validation perfor-
mance for the whole dataset.

The validation HRs for the “benefit” and “no benefit” class are
0.50 (95% CI: 0.32-0.76, p = 0.0012, n = 180) and 0.78 (95% CI:
0.63-0.98, p=0.03, n = 730), respectively. In the entire popula-
tion an HR of 0.74 (p=0.0029, n=910) is observed. These
results show that a subgroup, comprising 19.8% of the population
(n=180 out of 910), is identified by our method that benefits
substantially more from bortezomib treatment than the popula-
tion as a whole. More importantly, the STL approach is able to
discover and predict this subgroup using the gene expression data
at diagnosis.

In the bortezomib arm, the “benefit” and “no benefit” class
exhibit similar survival curves. This is expected, since our
classifier is trained to predict benefit with respect to the patient
group not receiving bortezomib. As the Kaplan-Meier in Fig. 2b
shows, the other treatment arm in the “no benefit” class also has a
similar survival, which means we expect these patients would
have had a similar survival had they not received bortezomib. The
ability to determine that a patient would not benefit from
bortezomib is of equal importance as predicting benefit;
preventing unnecessary treatment is an important aim of
personalized medicine.

The HRs observed within each of the individual validation
folds are similar to the HR obtained when combining all folds
(0.51 (95% CI: 0.28-0.92, p=10.03, n=89), 0.39 (95% CI:
0.14-1.08, p =0.07, n =30), and 0.46 (95% CIL: 0.21-1.02, p =
0.06, n = 61) in folds D1-D3, respectively). We note that the HR
is comparable in all folds, demonstrating a stable performance,
although not statistically significant for fold D2 and D3 at p < 0.05
due to the fact that in D2 9.9% of patients and in D3 20.1% are
included in the “benefit” class vs. 29.4% in D1.

Traditionally, the performance of a classifier is assessed by
computing its accuracy, which is done by comparing the labels
predicted by the classifier with ground truth labels. Ground truth
labels are labels that are known to be accurate because they can be
directly observed, e.g., if a patient survives longer than 5 years or
not. Since we do not know beforehand which patients benefited
from bortezomib, we have no ground truth labels available and
cannot compute the accuracy of our classifier. However, we can
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Fig. 2 Overview of the bortezomib classifier results and comparison to known markers. a Kaplan-Meier of the entire bortezomib dataset, showing a HR of
0.74 (95% Cl: 0.61-0.90, p = 0.0029, n =910), between the treatment arms. b Kaplan-Meier of the combined classifications into a “benefit” and “no
benefit” class of D1-D3. A HR of 0.50 (95% Cl: 0.32-0.76, p = 0.0012, n =180) is found between the treatment arms in the “benefit” class and a HR of
0.78 (95% Cl: 0.63-0.98, p = 0.03, n=730) in the “no benefit” class. These results show that a subgroup, comprising 19.8% of the population (n =180
out of 910 total), is identified by our method that benefits substantially more from bortezomib treatment than the population as a whole; in the entire
population an HR of 0.74 (95% ClI: 0.61-0.90, p = 0.0029, n = 910) is found. € The HR found in the “benefit” class (y-axis) when different operating points
(x-axis) are used, compared with known predictive and prognostic markers. The gray dotted line indicated the HR found in the entire dataset, without
classification. d Relationships between the 31 genes in common between the D1-D3 classifiers. Node size corresponds to how much more a gene was
observed in the selected gene sets than expected. Green nodes indicate that the gene is associated with a p < 0.05. Relationships are inferred from
literature with the GeneMANIA4 algorithm. A purple edge indicates the genes are co-expressed, a green edge indicates a genetic interaction, a red edge a
physical interaction, an orange edge a shared protein domain, a dark blue edge indicates colocalization and a light blue edge shows that both genes are

annotated to the same pathway

compare the class labels obtained with the three separate
classifiers when applied to all 910 patients. We find that these
three class assignments agree between the classifiers significantly
more than expected by chance (i.e., 0/3 classifiers or 3/3 classifiers
predict benefit; Supplementary Figure 1). A similar conclusion is
reached by comparing the classification scores directly, which
significantly correlate (all p values < 1 x 1074). When considering
the cases for which the 3 classifiers agree, we find that 503
patients are consistently classified as “no benefit” and 57
patients as “benefit”. Together, this demonstrates that, even
though the classifiers do not agree on the class assignment for all
patients (which is expected in practice for classifiers with less
than 100% accuracy), they capture the same gene expression
patterns.

The decision boundary of the classifiers are defined by the
parameters k and y and a threshold T. We optimize the
combination of k and y by an exhaustive grid search. We verified
that the performance of our classifier is robust to small changes in
these parameters (Supplementary Note 1).

The operating point of the classier is determined by the
number of individual classifiers in the ensemble that agree on
the class label, and is thus directly related to the confidence of the
ensemble classifier about the label “benefit”. To ensure sufficient
power and provide a treatment decision for a substantial group of
patients, the operating point of the classifier was set to 20% in
training (see methods). At this operating point, 19.8% of patients
in the validation folds were actually assigned to the ‘benefit’ class.
Figure 2c depicts the HR as a function of the confidence level of
the classifier. We observe that, for higher confidence levels
(yielding smaller sizes of the “benefit” class) more extreme
validation HRs are observed, demonstrating that there is a direct
relation between classifier score and treatment benefit. This is
consistent with the fact that the highest HR and largest class
“benefit” are found in fold D1 in validation, while the lowest HR
and the smallest class “benefit” are found in D2.

As a control experiment, we also ran the algorithm with
shuffled treatment labels, destroying the relationship between the
gene expression and the treatment specific survival. As expected,
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the classifier trained on this data shows no performance in the
validation data, achieving an HR of 1.09 (95% CI: 0.71-1.67, p =
0.69, n =167) in the class “benefit” and an HR of 0.95 (95% CI:
0.77-1.18, p =0.65, n="743) in the class “no benefit” (Supple-
mentary Figure 3). This reinforces our observation that STL
identifies a true effect, since the classifier shows no performance
in random data.

STL classifier outperforms known markers. We compared the
HRs found using the STL classifier with several known prognostic
markers in MM, some of which also show predictive value
(Fig. 2c). The STL classifier has a superior performance for
operating points that result in assignment of up to 30% of the
patients to the class “benefit”. The markers that slightly outper-
form the STL classifier do so only for operating points that results
in much larger sizes of the class “benefit” and lead to smaller
effect sizes. The gray line indicates the baseline HR found in the
entire dataset. A clinically actionable classifier should reach a
substantially larger benefit than this baseline, which is only
attained by the STL classifier and the MF cluster for operating
points <30%, where the STL classifier outperforms the MF
biomarker.

Biological information is important for performance. To
investigate if the biological knowledge contained in the GO, used
to define gene sets, truly aids classification performance, we also
tested random gene sets with the same set size distribution. Using
the random gene sets, final classification results in a significant
HR of 0.56 (95% CI: 0.34-0.90, p = 0.02, n = 148) when all three
validation folds are combined (Supplementary Figure 2).

This is not unexpected as combining random feature sets in an
ensemble classifier is known to achieve good classification
performance!®. Moreover, it has been shown previously that
random gene signatures can perform on par in a prognostic
setting?’. Nonetheless, the STL classifier trained using the GO
gene sets outperforms the random gene set approach in both HR
and p value. Moreover, in contrast to the relatively stable
performance across validation folds when using the GO gene sets,
the performance of the random set approach varies greatly
between the folds, ranging from an HR of 0.76 (95% CI:
0.32-1.85, p=0.55, n=41) in DI to an HR of 0.44 (95% CIL
0.21-0.93, p =0.03, n=67) in D3.

Together, this demonstrates that the biological information
contained in the GO gene sets is important to the performance of
the STL classifier.

Genes used to predict treatment benefit bortezomib. The
classifiers built for D1-D3 use 113, 218, and 111 GO gene sets,
respectively to predict bortezomib benefit, encompassing a total
of 1913 unique genes. There are 31 genes used in all three clas-
sifiers (Fig. 2d). There are GO categories that include a large
subset of these 31 genes, including “positive regulation of tran-
scription from RNA polymerase II promoter”, “cellular response
to hypoxia”, and “negative regulation of the apoptotic process”.
All these GO categories are associated with the pathogenesis of
cancer. Both increased proliferation and the ability to evade
apoptosis are hallmarks of cancer?!. It has also been established
that cancer cells can adapt their metabolism to thrive in hypoxic
conditions?2. For the 31 genes, we calculated whether they are
selected more than expected by chance. GO sets are hierarchical
(i.e., there is a larger parent category that can include several
children categories) and genes can be annotated to multiple GO
categories. Therefore, we have taken into account how many GO
categories include a certain gene to establish if we observe a gene
more often than expected in our classifiers. The expected count

for a gene is based on the number of GO categories that include
that gene, e.g., PTEN is included in 123 of the 10,581 gene sets, so
in the 442 gene sets used across D1-D3 we would expect to
observe PTEN approximately 5 times if it would occur at the same
frequency as within our selected gene sets. Most genes in com-
mon between the three classifiers are observed more often than
expected (degree of overrepresentation indicated by node size in
Fig. 2d), with 11 of 31 significantly overrepresented (p <0.05).
The most overrepresented genes are TMOD2, PHKA2, SPTCLI,
and SPTCL2. None of these genes are known to be associated with
MM or response to bortezomib. However, investigation of the
proteome of a cell line carrying a SPTCLI mutation showed an
increased presence of Ig kappa chain C?3. Immunoglobulin light
chain presence is used as a biomarker for MM and has been
identified as a risk factor for progression®%. PTEN is also found to
be significantly overrepresented. PTEN is a known tumor sup-
pressor and was found to be mutated in a various cancers?®. In
MM, PTEN mutations are relatively uncommon and associated

with advanced disease?.

Impact of dataset of origin on validation performance. Our
training dataset is a combination of three different datasets: total
therapy 2 (TT2), total therapy 3 (TT3) (together forming the TT
dataset), and HOVON-65/GMMG-HD4 (H65). Both the borte-
zomib and the no bortezomib arm contain more than one
treatment regimen (Supplementary Table 1). We trained and
validated on a combination of the datasets (see Methods). To
investigate the contribution of the different datasets to the final
validation performance, we calculated the HR in class “benefit”
for the TT and H65 patients separately. Reassuringly, we observe
a similar effect in class “benefit” in both datasets, albeit not sig-
nificant due to small sample size in the H65 dataset (HR = 0.69
(95% CI: 0.36-1.32), p=0.26, n=49, for H65 and HR = 0.38
(95% CI: 0.21-0.69), p=0.002, n =131 for TT, Supplementary
Figures 4, 5). Also, the observed HR is much smaller in the TT
dataset. This may be expected, since the HR in the overall
population is also smaller in TT than in H65 (the overall HR in
TT is 0.62 (95% CI: 0.46-0.84), p =0.002, n =583 vs. an HR of
0.86 (95% CI: 0.66-1.13), p = 0.28, n = 327 in H65).

We hypothesized that heterogeneity helps to prevent over-
fitting to one specific dataset or treatment regimen. To test this,
we also performed a cross-validation within the two TT datasets
only (the H65 dataset is too small for this with n=2327).
Subsequently, we trained a classifier on the entire TT dataset
(combining TT2 and TT3) and validated on H65. Cross-
validation within the TT dataset leads to an HR of 0.28 (95%
CL: 0.13-0.60, p =0.00098, n = 86) in class “benefit” and an HR
of 0.71 (95% CI: 0.51-0.98, p=0.038, n=497) in class “no
benefit” (Supplementary Fig. 6), which is a substantial improve-
ment over the classifier trained on the combined dataset. In
contrast, when the classifier is trained on the entire TT dataset, no
performance is observed in the H65 dataset (an HR of 1.13 (95%
CI: 0.63-2.04), p=0.68, n =66 in class “benefit” and 0.81 (95%
CL 0.60-1.1), p=0.18, n =261 in class “no benefit”), indicating
that some dataset specific fitting has occurred. Importantly,
dataset specific fitting does not necessarily indicate overtraining;
the classifiers still validate on the completely independent hold
out validation fold. These results do suggest that it is very
important to match the training population with the population
one intends to use the classifier in. If the population in which the
classifier is intended to be applied is heterogeneous, the training
dataset also needs to reflect this heterogeneity.

In the MM dataset under study here, one possible explanation
for the lack of validation of the TT-based classifier on the H65
data is that the TT trials were conducted in the USA and included
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more additional treatment than the European H65 trial (see
Supplementary Table 1 for treatment details). When the STL
classifier is trained exclusively on the TT datasets, it could become
specifically predictive for the TT regimen, rather than bortezo-
mib, explaining why this classifier does not show a satisfactory
performance in H65. When trained on the mixed dataset, the
classifier does show performance in the H65 dataset, but still
performs better within the TT dataset, which makes up a bigger
part of the training data.

STL finds a predictive classifier for lenalidomide benefit. The
STL method was developed based on the bortezomib dataset.
Even though a strict separation of training and validation has
been made, we cannot exclude the possibility of “experimenter
bias”?, which is the result of making experimental choices based
on the results on the training dataset and which can lead to a
classifier that will only perform well on the specific dataset at
hand.

To demonstrate that the STL method is not biased to just one
dataset we applied it to a completely independent dataset
obtained from the CoMMpass database (https://research.
themmrf.org/). CoMMpass contains data from an observational
MM study, meaning the trial did not interfere with the treating
physician’s choice of treatment. This is a good model for the
setting in which an eventual predictive biomarker would be
applied. Moreover, instead of microarrays, RNAseq was used to
obtain gene expression measurements, thus providing an
additional axis of variation compared to microarray data. Overall,
gene expression data and annotation was available for 662
patients, 447 of which received lenalidomide in the first line and
215 did not. An overall HR of 0.59 (p=0.004) in favor of
lenalidomide was observed, as seen in the Kaplan-Meier in
Fig. 3a.

Similar as before, the dataset was divided into three equal folds
and STL obtains classifiers that successfully predict benefit in all
folds. Since the CoMMpass dataset is smaller than the bortezomib
dataset used before, we required the “benefit” class to contain at
least 30% of the patients, to ensure sufficient power. This results
in a combined HR of 0.36 (95% CI: 0.18-0.71, p =0.0031, n=
206) over the entire dataset, as shown in Fig. 3b. In total 31.1% of
patients were classified as class “benefit”. Again, the STL classifier
was able to distinguish a subset of patients with significant
treatment benefit in each fold with HRs of 0.27 (95% CI
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0.07-1.06, p =0.06, n=172), 0.39 (95% CI: 0.11-1.41, p=0.15,
n=66) and 040 (0.14-1.15, p=0.09, n=68) in DI1-D3,
respectively. This demonstrates that STL also successfully
identified a predictor for lenalidomide benefit.

Genes used to predict treatment benefit lenalidomide. The
predictive classifiers for lenalidomide use 47, 5, and 119 gene sets
in D1-D3, respectively, encompassing 3723 unique genes. Out of
these, 5 genes are used in all three classifiers: CYP11B2, SHH,
HGNC, CAVI, and SMO, all of which are observed more fre-
quently than expected. SHH and CYPIIB2 are significantly
overrepresented (p <0.05). SHH is a crucial part of the hedgehog
signaling pathway, which has been previously found to play an
important role in the pathogenesis of MM?8. Neither of these
genes has previously been associated with lenalidomide response,
possibly representing an undiscovered mechanism influencing
lenalidomide response in MM patients.

Discussion

Simulated treatment learning addresses an urgent clinical need
because response rates to current cancer therapies are often poor
and moreover frequently accompanied with serious side effects.
STL offers an important step towards realistic personalization of
cancer medicine administration by identifying gene expression
markers that can be used to determine the most effective treat-
ment for a cancer patient at the moment of diagnosis.

The STL classifier was successfully tested across different gene
expression platforms, different treatments and different study
types, demonstrating that STL is more generically applicable than
one particular dataset. Since our work has focused on MM, an
important next step is to investigate if STL is also successful in
unraveling treatment benefit for other diseases. If so, STL can play
an important role in rescuing treatments that do not achieve a
significant effect in the entire patient population but may still
benefit a subset of the patients. For instance, STL can be an
important post hoc analysis for phase III clinical trials of novel
treatments that have missed their endpoint, such as, for instance,
nivolumab in the CheckMate-026 trial?®. We do note that STL
requires a relatively large number of samples to build the classi-
fier, which may not always be available when a novel treatment
first enters clinical trials. The generic concept of STL can be
readily extended to include patient similarity definitions based on
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Fig. 3 Overview of the lenalidomide classifier results. a Kaplan-Meier curves for the entire lenalidomide dataset, showing an HR of 0.59 (95% CI:
0.41-0.84, p = 0.0042, n = 662) between the treatment arms. b Kaplan-Meier curve of the combined classifications into a “benefit” and “no benefit” class
of D1-D3. An HR of 0.36 (95% ClI: 0.18-0.71, p = 0.0031, n = 206) is found between the treatment arms in the “benefit” class and an HR of 0.71 (95% ClI:

0.46-1.10, p = 0.13, n = 456) in the "no benefit” class
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e.g., germline or somatic genomic profiles and other types of
outcome measure such as categorical or binary measures.

Methods

Data and processing. We pooled gene expression and survival data from three
phase TII trials: TT2 (GSE2658), TT3 (GSE2658), and H65/GMMG-HD4
(GSE19784). The TT2 dataset included 345 newly diagnosed MM (NDMM)
samples, treated either with thalidomide and melphalan (n = 173) or melphalan
alone (n = 172). Average age is 56.3 (range: 24-76) and 57.1% of the patients is
male. The TT3 dataset included 238 NDMM samples treated with bortezomib,
thalidomide, dexamethasone, cyclophosphamide, cisplatin, and etoposide. Average
age is 58.7 (range: 32-75) and 67.6% is male. The H65 dataset included 327
NDMM samples, treated either with vincristine, doxorubicin, and dexamethasone
(VAD, n = 158) or bortezomib, doxorubicin and dexamethasone (PAD, n = 169).
Average age is 54.7 (range: 27-65) and 56.4% is male. In our analyses of the pooled
data two treatment arms were considered: a bortezomib arm, which comprises the
PAD arm from H65 and TT3, and a nonbortezomib arm, which comprises the
VAD arm from H65 and TT2. Combined, these datasets include 910 patients, of
which 407 received bortezomib and 503 did not.

All samples were profiled with the Affymetrix Human Genome U133 plus 2.0
array. Gene expression was MAS5 and log2 normalized. Batch effects resulting
from pooling different datasets were corrected with ComBat®’. Data were scaled to
mean 0 and variance 1 per probeset. Probesets with a variance of <1 before scaling
were discarded.

The data was split in fold D1 (303 samples), fold D2 (303 samples), and fold D3
(304 samples), stratifying for treatment arm and survival. Fold D1 is not used at
any point in the training and serves as validation data, while fold D2 and fold D3
are combined to serve as training data. After the STL classifier is successfully
validated on fold D1, the folds are rotated to serve as additional validation folds to
assess robustness. The training data for fold D2 consists of D1 and D3 and the
training data for D3 consists of D1 and D2 (specification of which samples were
used in which folds is available with the code in the GitHub repository).

After developing the STL method on the microarray dataset, we also applied it
to the CoMMpass trial (NCT0145429) dataset generated by the Multiple Myeloma
Research Foundation. For 662 patients both RNAseq, survival data, and treatment
information was available. Sequencing data is processed with the Cufflinks pipeline
(researcher.themmrf.org). The dataset was split into a treatment arm where
patients received lenalidomide as first-line treatment (n = 447) and an arm where
patients did not (n = 215). This data was also split into folds D1 (220 samples), D2
(221 samples) and D3 (221 samples), specification of which samples were used in
which folds is available with the code in the GitHub repository.

Endpoint and survival analysis. PFS was used as endpoint, as this is the most
direct readout of first-line treatment related survival, and therefore considered to
be more relevant compared to overall survival. PFS times in the TT2 and H65
datasets were truncated to 52.53 months, corresponding to the longest follow-up
time in the TT3 dataset.

Survival analyses were done using the Cox Proportional Hazards model
(survival package, version 2.38.4)3!. For the microarray data, the survival analysis
included a stratification for dataset of origin. This means the base hazard was
estimated separately for the TT2/TT3 dataset and the H65 dataset. This is
necessary to correct for the significant survival difference found between these
datasets. HR and associated two-sided p values were calculated. P values below 0.05
were considered statistically significant. All HRs are computed as bortezomib vs. no
bortezomib and lenalidomide vs. no lenalidomide, which means an HR below
1 signifies a benefit when receiving bortezomib or lenalidomide. All calculations
were performed in R version 3.1.2.

Gene sets. For the bortezomib classifier we tested all GO categories, as defined by
the R Bioconductor package hgul33plus2.db3? (accessed 27 October 2015), with
two or more probesets associated to them. This resulted in 10,581 gene sets. To test
whether the biological information, contained in the GO annotation, aids the
performance of the algorithm, 10,581 random gene sets matching the size of the
actual selected GO categories were also tested.

For the lenalidomide classifier we tested all the GO categories with two or more
genes associated to them, as defined by Bioconductor package biomaRt3? (accessed
19 June 2017). This resulted in 9121 gene sets.

Algorithm. The STL classifier aims to predict if a patient does or does not benefit
from a certain treatment of interest based on the gene expression profile of the
patient. In order to train this classifier, a gene expression dataset is required that
consists of two treatment arms and a continuous outcome measure. These data are
first split into training and validation folds. The training data comprises of two-
thirds of the data, while one-third (fold D) is kept apart to function as validation
data. We define three separate folds D (D1-D3), such that each patient is included
in the validation set once. The training data is subsequently split further into folds
A-C for training.
We first define a ranked list of prototype patients on fold A (Step 1) that

exhibit a better than expected prognosis on the treatment of interest compared

to a set of genetically similar patients that received an alternative treatment. In
Step 2, a decision boundary around a selection of prototype patients is
determined on fold B. Patients that lie within this decision boundary are
expected to show a favorable outcome when receiving the treatment of interest
and are classified as benefitting (class “benefit”). All other patients are
considered class “no benefit” and are not expected to benefit from receiving the
treatment of interest. Because it is a priori unknown based on which genes
patient similarity should be defined, step 1 and 2 are performed for a large
number of functionally coherent gene sets obtained from the GO annotation,
yielding one classifier per gene set. Step 1 and 2 are repeated 12 times to obtain a
robust estimate of the performance per gene set. In each repeat, the training data
is split into a different fold A-C. The performance is defined as the HR between
treatments in class “benefit”, found in a fold C, which contains samples that were
not used in step 1 and 2. All gene sets are ranked by their mean performance in
fold C across repeats. In Step 3 we determine the optimal number of gene sets to
combine into a final classifier. We found that defining performance and selecting
the optimal number of gene sets on the same folds C leads to overtraining.
Therefore, we run the entire algorithm a second time (Run 2), using 12 new
repeats with different splits into fold A-C. The first run of 12 repeats is used to
rank the gene sets. The combined performance of these ranked gene sets on the
folds C from Run 2 is used to determine the optimal number s of gene sets.
Similar to the boosting principle3#, the individual classifiers are combined into
an ensemble to construct a more robust final classifier. The performance of this
combined classifier is measured on fold C of Run 2. The gene sets are added to
the classifier in order of their ranking, until an optimal performance is reached
across all the repeats from Run 2. Since there are 12 repeats, each combination
results in 12 HRs as measured on the folds C from run 12. To determine the
optimal number of gene sets, we fit a local polynomial regression line on the
median HRs for each combination of gene sets. The optimal number of gene sets
s is reached when adding a gene set does not result in a lower HR. We then rank
the gene sets based on their individual performance across the folds C of Run 2
and select the top s for inclusion in the final ensemble classifier. Finally, in Step
4, one final classifier is trained using the entire training dataset for these selected
gene sets.

These steps are visualized in Fig. 1d and are described in more detail below.

In Step 1, we perform prototype ranking on fold A. For each patient receiving
the treatment of interest, the treatment benefit is defined as

1
APFS, =~ 3" (PFSi - Pst) (1)

where O is the set of the n most similar patients (based on Euclidean distance) that
did not receive the treatment of interest. We use # = 10. In an approach similar to
Harrell’s C-statistic®®>, APFS is only calculated for neighbor pairs where it is clear
which patient experienced an event first; if both are censored or one patient is
censored before the neighbor experienced an event, APES is not computed. When
n =10 is used, this on average leads to seven neighbors being used in the
calculation of APFS. To correct for the fact that a patient with a long survival time
will, on average, have a large APFS irrespective of its relative treatment benefit
compared to genetically similar patients, we define the z- normalized zPFS score as:

APFS; — u(RPFS;)

PES, =
2 o(RPFS,)

)

where RPFS is a distribution of 1000 random APES scores, obtained by calculating
APFS for randomly chosen sets O, i.e., determining treatment benefit with respect
to random patients instead of genetically similar patients. Based on the zPFS score
all patients in fold A that were given the treatment of interest can be ranked.

In Step 2, we define the classifier on fold B. The classifier is defined by a
subset of k top-ranked prototypes along with a decision boundary defined in
terms of the Euclidean distance y around a prototype. A patient is classified as
class “benefit” when it lies within y of any of the top k prototypes. The optimal
values for k and y are those resulting in the lowest HR in class “benefit” (the
patient group in which the treatment of interest should have a better survival).
We set an operating point that additionally constrains k and y, such that class
“benefit” comprises at least a certain percentage of the dataset. This ensures
sufficient statistical power to compute the significance of the HR in the “benefit”
class. The number of prototypes was restricted to ten to prevent defining an
extremely complicated classifier. The search grid for parameter y was made
dependent on the local density of the neighbors, and consisted of the sorted list
of Euclidean distances between the prototype and its neighbors. The optimal k
and y combination is chosen so that the HR in class “benefit” is minimal, while
still associated with a p value below 0.05. If no combination results in a p value
below 0.05, the minimal nonsignificant HR that results in a class “benefit” of
sufficient size is chosen.

In step 3, we rank and select the gene sets. First, the gene sets are ranked by
their mean performance in fold C over all repeats from Run 1. After ranking, we
run the algorithm a second time, with different divisions into fold A-C. We add
gene sets to an ensemble classifier one by one based on this ranking. The
performance of the combined gene sets is measured on each fold C of this second
run. We find that defining the ranking on different folds than we use to measure
combined performance prevents overtraining, although some bias is still expected
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to occur. Since the found HR can fluctuate between folds and gene set numbers, a
regression line is fit through the median HRs found on folds C in the second run
and the optimal number of gene sets is determined: the first combination of gene
sets for which adding another gene set does not lead to an improvement of the HR
larger than 1x 1074

After the optimal number of gene sets is determined in Step 3, the final classifier
is defined in Step 4. The gene sets are ranked based on their mean performance in
fold C in the second run. The top scoring gene sets are selected and for these gene
sets a final classifier is trained. To this end, the complete training dataset is split
into only two folds, since the third fold is no longer required. The classifiers defined
by different gene sets are combined into an ensemble classifier by an equally
weighted voting procedure, which means each classifier has an equal influence on
the final classification. For an ensemble classifier containing s gene sets, this defines
a classification score between 0 and s per patient. This score is thresholded by
threshold T, which determines whether a patient is to benefit from the treatment of
interest, where a patient with a score below the threshold is classified as not
benefitting from treatment (“no benefit” class). The optimal threshold T is the one
for which the HR between treatments is minimal in class “benefit”. This
combination of classifiers and threshold can be used to classify new and unseen
patients and is validated on fold D.

Calculating overrepresentation of genes in the classifier. The same gene can be
used multiple times in a single classifier and/or multiple times across the classifiers
obtained for fold D1-D3. Both cases provide evidence of the importance of the
gene for the treatment benefit prediction. To assess whether genes are selected
more frequently than expected by chance across all three classifiers, we determine
the degree of overrepresentation by dividing the observed count by the expected
count. The expected count is calculated by p x W, where p is the fraction of the
gene sets containing the gene and W the total number of gene sets selected across
all three classifiers. A p value is determined using the binomial test.

Training regular classifiers. We defined the labels that were used to train the
regular classifiers in two ways. First, labels were defined by assigning the 25%
longest surviving bortezomib patients and the 25% shortest surviving non-
bortezomib patients to the “benefit” class and all others to the “no benefit” class. A
classifier was trained using folds A-C to predict these labels, using the HR in
validation fold D1 as performance measure of the predictive power. For the nearest
mean classifier, a double-loop cross-validation was used to optimize the number of
genes (ranked based on f-score), using balanced accuracy as the performance
measure.

A random forest classifier (R package randomForest, version 4.6.12)% and a
support vector machine (R package el071, version 1.6.7)3 were also trained. For
both these classifiers, the number of genes was optimized in cross-validation. For
the random forest classifier 2000 trees were trained per classifier and the bootstrap
sample was sampled equally from both classes, to prevent the classifier being
affected by the class imbalance. For the support vector machine, C values from 1 to
100 were tested, in steps of 1. The gamma used is 1/P, where P is the number of
input variables, i.e., the number of genes.

For all classifiers, the accuracy reported is the mean accuracy in cross-validation
for the optimal number of input genes.

Comparison with known prognostic markers. To the best of our knowledge,
RPLS5 is the only published gene expression-based marker that predicts bortezomib
benefit by comparing to another treatment group!®. We tested RPL5 on the data
from the TT studies, since it was trained on the H65 data. Since some predictive
markers are discovered by testing markers previously known to be prognostic, we
also compare with prognostic markers. FISH markers were called on the gene
expression data, using previously developed classifiers$, since FISH data were not
available for all patients. Unfortunately, there is no reliable gene expression clas-
sifier for del17p. We tested if any predictive information was available in previously
defined molecular subtypes in MM and in the prognostic gene signature EMC-
9240,

Code availability. All code needed to train and validate the classifier is available at
github.com/jubels/GESTURE.

Data availability. All survival and treatment data included in the bortezomib
dataset are supplied in the GitHub repository. The gene expression data from the
TT2 and TT3 studies are accessible in the GEO database, accession number
GSE2658. The gene expression data from the H65/GMMG-HD4 study is accessible
in the GEO database, accession number GSE19784.

All survival, treatment and RNAseq data used for the lenalidomide dataset is
accessible at research.themmrf.org.
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